organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ismail Çelik,^a Osman Çakmak,^b Mehmet Akkurt,^c* Cem Cüneyt Ersanlı^d and Orhan Büyükgüngör^d

^aDepartment of Physics, Faculty of Arts and Sciences, University of Cumhuriyet, 58140 Sivas, Turkey, ^bDepartment of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, 60240 Tokat, Turkey, ^cDepartment of Physics, Faculty of Arts and Sciences, University of Erciyes, 38039 Kayseri, Turkey, and ^dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139, Samsun, Turkey

Correspondence e-mail: icelik@cumhuriyet.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å R factor = 0.048 wR factor = 0.091 Data-to-parameter ratio = 25.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved The crystal structure of the title compound, $C_7H_6Br_4$, has been determined in the orthorhombic space group *Pnma*. The molecule, consisting of a six-membered ring with four Br atoms and the bridging methylene group, has a boat conformation. The molecule has crystallographic mirror (C_s) symmetry, the mirror plane passing through the atoms of the bridging methylene group.

Comment

When norbornadiene (bicyclo[3.2.1]heptadiene) is converted photochemically to the higher-energy quadricyclane, the stored energy may be released by catalytic reversal of the reaction. Since norbornadiene itself does not undergo efficient valence isomerization upon direct and/or sensitized irradiation, norbornadienes with appropriate chromophores have been synthesized and their photo-isomerization examined (Hirao *et al.*, 1984; Yoshida, 1982; Toda *et al.*, 1982). Tri- and tetrasubstituted norbornadienes have attracted considerable attention because their quadricyclanes may serve as potential solar-energy storage cells, but a convenient preparation of such norbornadienes is still not available (Harel *et al.*, 1987; Maruyama & Tamiaki, 1987; Gaussman & Hershberger, 1987; Nishino *et al.*, 1986; Fife *et al.*, 1985).

Recently, we have succeeded in the preparation of 2,3,5,6tetrabromonorbornene by the selective bromination of norbornadiene (Tutar *et al.*, 1996; Adam *et al.*, 2002). In this study, we report the molecular and crystal structure of (I).

The molecule of (I) is shown in Fig. 1 and its geometric parameters are listed in Table 1. The X-ray study reveals that the title compound consists of a norbornene skeleton composed of two five-membered rings in envelope conformations; alternatively, it can be described as a six-membered ring with four Br atoms, two of them in *cis* positions at sp^3 C atoms, held in a boat conformation [puckering parameters: Q = 0.983 (6) Å, $\theta = 90.0$ (4) and $\varphi = 60.0$ (4)°; Cremer & Pople, 1975] by a bridging methylene group.

The molecule contains a mirror plane which passes through atoms C4, H4A and H4B and the mid-points of the C1–C1ⁱ [1.539 (7) Å] and C3–C3ⁱ bonds [symmetry code: (i) $x, \frac{1}{2} - y, z$]. The C3–C3ⁱ bond of 1.269 (9) Å corresponds to a double bond involving two sp^2 C atoms. Received 5 February 2004 Accepted 20 February 2004 Online 28 February 2004

1330 independent reflections 813 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.153$

 $\theta_{\rm max} = 29.5^\circ$ $h = -9 \rightarrow 9$

 $k = -16 \rightarrow 16$

 $l = -16 \rightarrow 16$

Figure 1

A view of the title compound, with the atom-numbering scheme [symmetry code (i): $x, \frac{1}{2} - y, z$]. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2

The molecular packing of the title compound, (I), viewed along the *a* axis.

The geometry of (I) is consistent with that reported for other norbornenes. The Br-C bond distances are nearly equal to each other, the average value being 1.910 (6) Å. The Br-C-C bond angles are within the range 110.0 (4)- $127.1(5)^{\circ}$, [average values for related compounds are 111.2 (3)° (Hökelek et al., 1990), 115.1 (6)° (Hökelek et al., 1991), 113.9 (7)° (Hökelek *et al.*, 1998) and 112.6 (7)° (Hökelek *et al.*, 2001)]. The C2-C4-C2ⁱ angle [91.3 (6)°] is very different from the tetrahedral value. In the literature, corresponding angles are reported to be 101.0 (9)° (Büyükgüngör, 1989), 93.3 (8)° (Hökelek et al., 1998), 94.3 (7)° (Akkurt et al., 2000) and 95.9 (9)° (Hökelek et al., 2001).

Experimental

To a solution of 2,2,3,5,6-pentabromonorbornane (1.5 g, 3.05 mmol) in dry and freshly distilled tetrahydrofuran (50 ml) was added potassium tert-butoxide solution (0.85 g, 7.63 mmol) in dry and freshly distilled tetrahydrofuran (30 ml). The resulting reaction mixture was magnetically stirred for 12 h at room temperature. The reaction progress was monitored by thin-layer chromatography. When the reaction was complete, the reaction mixture was diluted with water (100 ml) and diethyl ether (100 ml). The organic layer was

washed with water (4 \times 50 ml), and dried over MgSO4. After evaporation of the solvent, the residue was passed through a short silica-gel (15 g) column and eluted with hexane. Recrystallization from CH₂Cl₂-hexane afforded 2,3,5,6-tetrabromo-bicyclo[2.2.1]hept-2-ene, (I), in 90% yield: m.p. 419-419.5 K. ¹H NMR (CDCl₃, 250 MHz): δ 2.25 p.p.m. (*dt*, H₇, *B* side of *AB* system, J_{7ab} = 12 Hz, J_{72} $= J_{23} = 4$ Hz), 2.4 p.p.m. (*dt*, *B* side of *AB* system), 3.25 p.p.m. (*t*, H1, H4), 4.2 (d, H₅ and H₆); ¹³C NMR (CDCl₃, 62 MHz): δ 127.8 (C₂, C₃), 61.5 (C₁, C₄), 50.6 (C₅, C₆), 43.5 (C₇).

Crystal data

$C_7H_6Br_4$	Mo K α radiation		
$M_r = 409.72$	Cell parameters from 1296		
Orthorhombic, Pnma	reflections		
a = 6.681 (5) Å	$\theta = 2.4-29.5^{\circ}$		
b = 12.040(5) Å	$\mu = 16.17 \text{ mm}^{-1}$		
c = 12.326(5) Å	T = 293 K		
V = 991.5 (9) Å ³	Prism, colorless		
Z = 4	$0.30 \times 0.13 \times 0.10 \text{ mm}$		
$D_x = 2.745 \text{ Mg m}^{-3}$			

Data collection

Stoe IPDS-II diffractometer ω scans Absorption correction: refined from ΔF (cubic fit to $\sin\theta/\lambda$, 24 parameters; Parkin et al., 1995) $T_{\min} = 0.057, \ T_{\max} = 0.198$ 16 499 measured reflections

Refinement

$w = 1/[\sigma^2(F_o^2) + 0.4407P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0015 (3)

Table 1

Selected geometric parameters (Å, °).

1.958 (5)	C2-C3	1.535 (9)
1.862 (6)	C2-C4	1.528 (9)
1.534 (8)	C3-C3 ⁱ	1.269 (9)
1.539 (7)		
110.0 (4)	C3-C2-C4	101.3 (5)
116.0 (3)	Br2-C3-C2	125.2 (4)
102.1 (4)	Br2-C3-C3 ⁱ	127.1 (5)
104.8 (5)	$C2-C4-C2^{i}$	91.3 (6)
102.5 (5)		
168.1 (4)	C1-C2-C3-Br2	-101.2(5)
-86.6(5)	C4-C2-C3-Br2	152.6 (5)
119.6 (4)	$Br2 - C3 - C3^{i} - C2^{i}$	172.9 (4)
	$\begin{array}{c} 1.958 \ (5) \\ 1.862 \ (6) \\ 1.534 \ (8) \\ 1.539 \ (7) \\ 110.0 \ (4) \\ 116.0 \ (3) \\ 102.1 \ (4) \\ 104.8 \ (5) \\ 102.5 \ (5) \\ 168.1 \ (4) \\ -86.6 \ (5) \\ 119.6 \ (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry code: (i) $x, \frac{1}{2} - y, z$.

All H atoms were positioned geometrically at distances of 0.98 (CH) and 0.97 Å (CH₂) and refined using a riding model. The $U_{iso}(H)$ values were set to $1.2U_{eq}(C)$ of the carrier atom.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F.279 of the University Research Fund).

References

- Adam, W., Çakmak, O. Saha-Möller, C. R. & Tutar, A. (2002). Synlett, pp. 49– 52.
- Akkurt, M., Çelik, İ., Tutar, A., Çakmak, O. & İde, S. (2000). Z. Kristallogr. 215, 529–530.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Büyükgüngör, O. (1989). Acta Cryst. C45, 75-77.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fife, D. J., Moore, W. M. & Morse, K. W. (1985). J. Am. Chem. Soc. 107, 7077– 7083.
- Gaussman, P. G. & Hershberger, J. W. (1987). J. Org. Chem. 52, 1337-1339.

- Harel, Y., Adamson, A. W., Kutal, C., Grutsch, P. A. & Yasufuku, K. (1987). J. Phys. Chem. 91, 901–904.
- Hirao, K., Ando, A., Hamada, T. & Yonemitsu, O. (1984). J. Chem. Soc. Chem. Commun. pp. 300–302.
- Hökelek, T., Çakmak, O. & Balcı, M. (1990). Acta Cryst. C46, 1906–1908.
- Hökelek, T., Çakmak, O. & Balcı, M. (1991). Acta Cryst. C47, 1672-1675.
- Hökelek, T., Çakmak, O. & Tutar, A. (1998). J. Chem. Cryst. 28, 433-436.
- Hökelek, T., Çelik, İ., Tutar, A. & Çakmak, O. (2001). Acta Cryst E57, o709o711.
- Maruyama, K. & Tamiaki, H. (1987). J. Org. Chem. 52, 3967-3970.
- Nishino, H., Toki, S. & Takamuku, S. (1986). J. Am. Chem. Soc. 108, 5030-5032.
- Parkin, S, Moezzi, B & Hope, H (1995). J. Appl. Cryst. 28, 53-56.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). *X-AREA* (Version 1.18) and *X-RED*32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Toda, T., Hasegava, E., Mukai, T., Tsurata, H., Hagiwara, T. & Yoshida, T. (1982). *Chem. Lett.* pp. 1551–1554.
- Tutar, A., Taşkesenligil, Y., Çakmak, O.; Abbasoğlu, R. & Balcı, M. (1996). J. Org. Chem. 61, 8297–8300.
- Yoshida, J. (1982). Japanese Patent 57149251.